54 research outputs found

    Parametric analysis of Asymmetric Spur Gear Tooth

    Get PDF
    Abstract Gear is a machine element used to transmit motion and power between rotating shafts by means of progressive engagement of projections called teeth. Gears are classified according to the relative position of the axes of the shaft, type of gearing, peripheral velocity of the gears and position of teeth on gear surface. Presently gears are suffered by backlash the amount by which the width of a tooth space exceeds the thickness of the engaging tooth on the pitch circles, undercut a condition in generated gear teeth when any part of the fillet curve lies inside of a line drawn tangent to the working profile at its lowest point and interference is an important aspect of kinematics of gearing. When the gear tooth tries to dig below the base circle of mating gear then the gear tooth action shall be non conjugate and violate the fundamental law of gearing this non conjugate action is called the interference . These defects can be eliminated by increasing the pressure angle, by increasing the addendum of mating gear and another way of increasing the load capacity of transmissions is to modify the involute geometry. This has been a standard practice in sophisticated gear design for many years. The nomenclature describing these types of gear modifications can be quite confusing with reference to addendum modification or profile shift. An additional alteration that is very rarely used is to make the gears asymmetric with different pressure angles for each side of the tooth. An asymmetric spur gear drive means that larger and smaller pressure angles are applied for the driving and coast sides. The two profiles of a gear tooth are functionally different for most gear drives. The workload on one side of profile is significantly higher than the other Gears. The main objective of this paper is to generate asymmetric spur gear tooth geometry for different pressure angles on drive and coast side using computer programme. Developed programme is used to create a finite element model of gear tooth to study the effect of bending stress at the critical section for different pressure angles, different number of teeth and module. To study the effect of above asymmetric spur tooth parameters Finite Element Analysis software ANSYS was used

    Prudent Memory Reclamation in Procrastination-Based Synchronization

    No full text

    Prudent Memory Reclamation in Procrastination-Based Synchronization

    No full text
    Procrastination is the fundamental technique used in synchronization mechanisms such as Read-Copy-Update (RCU) where writers, in order to synchronize with readers, defer the freeing of an object until there are no readers referring to the object. The synchronization mechanism determines when the deferred object is safe to reclaim and when it is actually reclaimed. Hence, such memory reclamations are completely oblivious of the memory allocator state. This induces poor memory allocator performance, for instance, when the reclamations are ill-timed. Furthermore, deferred objects provide hints about the future that inform memory regions that are about to be freed. Although useful, hints are not exploited as deferred objects are not ``visible'' to memory allocators. We introduce Prudence, a dynamic memory allocator, that is tightly integrated with the synchronization mechanism to ensure visibility of deferred objects to the memory allocator. Such an integration enables Prudence to (i) identify the safe time to reclaim deferred objects' memory, (ii) have an inclusive view of the allocated, free and about-to-be-freed objects, and (iii) exploit optimizations based on the hints about the future during important state transitions. Our evaluation in the Linux kernel shows that Prudence integrated with RCU performs 3.9 x to 28 x better in microbenchmarks compared to SLUB, a recent memory allocator in the Linux kernel. It also improves the overall performance perceptibly (4%-18%) for a mix of widely used synthetic and application benchmarks. Further, it performs better (up to 98%) in terms of object hits in caches, object cache churns, slab churns, peak memory usage and total fragmentation, when compared with the SLUB allocator

    Familial auditory neuropathy spectrum disorder – A case report

    No full text
    Auditory Neuropathy Spectrum Disorder (ANSD) is a hearing disorder where outer hair cell function inside the cochlea is typical, but inner hair cell and/or the auditory nerve function is disrupted. It is a heterogeneous disorder which can have any congenital or acquired causes. Additionally, the etiology of auditory neuropathy is immense, which may comprise prematurity, hyperbilirubinaemia, anoxia, hypoxia, congenital brain anomalies, ototoxic drug exposure, and genetic actors. It is projected that roughly 40% of cases have an underlying genetic origin, which can be inherited in both syndromic and non-syndromic conditions. The below case report serves as an extra evidence for the underlying genetic trait in ANSD. The study presents two cases where, both father and daughter were diagnosed as ANSD.</p

    The impact of COVID-19 lockdown on dengue transmission in Sri Lanka : A natural experiment for understanding the influence of human mobility

    No full text
    BACKGROUND: Dengue is one of the major public health problems in Sri Lanka. Its outbreak pattern depends on a multitude of drivers, including human mobility. Here we evaluate the impact of COVID-19 related mobility restriction (lockdown) on the risk of dengue in Sri Lanka. METHODOLOGY: Two-stage hierarchical models were fitted using an interrupted time-series design based on the notified dengue cases, January 2015 to July 2020. In the first stage model, the district level impact was estimated using quasi-Poisson regression models while accounting for temporal trends. Estimates were pooled at zonal and national levels in the second stage model using meta-analysis. The influence of the extended period of school closure on dengue in children in the western province was compared to adults. FINDINGS: Statistically significant and homogeneous reduction of dengue risk was observed at all levels during the lockdown. Overall an 88% reduction in risk (RR 0.12; 95% CI from 0.08 to 0.17) was observed at the national level. The highest impact was observed among children aged less than 19 years showing a 92% reduction (RR 0.8; 95% CI from 0.03 to 0.25). We observed higher impact in the dry zone having 91% reduction (RR 0.09; 95% CI from 0.05 to 0.15) compared to wet zone showing 83% reduction (RR 0.17; 95% CI from 0.09 to 0.30). There was no indication that the overall health-seeking behaviour for dengue had a substantial influence on these estimates. SIGNIFICANCE: This study offers a broad understanding of the change in risk of dengue during the COVID-19 pandemic and associated mobility restrictions in Sri Lanka. The analysis using the mobility restrictions as a natural experiment suggests mobility patterns to be a very important driver of dengue transmission

    Effect of El Niño–Southern Oscillation and local weather on Aedes dvector activity from 2010 to 2018 in Kalutara district, Sri Lanka: a two-stage hierarchical analysis

    No full text
    Background: Dengue, transmitted by Aedes mosquitoes, is a major public health problem in Sri Lanka. Weather affects the abundance, feeding patterns, and longevity of Aedes vectors and hence the risk of dengue transmission. We aimed to quantify the effect of weather variability on dengue vector indices in ten Medical Officer of Health (MOH) divisions in Kalutara, Sri Lanka. Methods: Monthly weather variables (rainfall, temperature, and Oceanic Niño Index [ONI]) and Aedes larval indices in each division in Kalutara were obtained from 2010 to 2018. Using a distributed lag non-linear model and a two-stage hierarchical analysis, we estimated and compared division-level and overall relationships between weather and premise index, Breteau index, and container index. Findings: From Jan 1, 2010, to Dec 31, 2018, three El Niño events (2010, 2015–16, and 2018) occurred. Increasing monthly cumulative rainfall higher than 200 mm at a lag of 0 months, mean temperatures higher than 31·5°C at a lag of 1–2 months, and El Niño conditions (ie, ONI &gt;0·5) at a lag of 6 months were associated with an increased relative risk of premise index and Breteau index. Container index was found to be less sensitive to temperature and ONI, and rainfall. The associations of rainfall and temperature were rather homogeneous across divisions. Interpretation: Both temperature and ONI have the potential to serve as predictors of vector activity at a lead time of 1–6 months, while the amount of rainfall could indicate the magnitude of vector prevalence in the same month. This information, along with knowledge of the distribution of breeding sites, is useful for spatial risk prediction and implementation of effective Aedes control interventions. Funding: None

    Assessing the associations between Aedes larval indices and dengue risk in Kalutara district, Sri Lanka : a hierarchical time series analysis from 2010 to 2019

    No full text
    BACKGROUND: Dengue is a major public health problem in Sri Lanka. Aedes vector surveillance and monitoring of larval indices are routine, long-established public health practices in the country. However, the association between Aedes larval indices and dengue incidence is poorly understood. It is crucial to evaluate lagged effects and threshold values of Aedes larval indices to set pragmatic targets for sustainable vector control interventions. METHODS: Monthly Aedes larval indices and dengue cases in all 10 Medical Officer of Health (MOH) divisions in Kalutara district were obtained from 2010 to 2019. Using a novel statistical approach, a distributed lag non-linear model and a two-staged hierarchical meta-analysis, we estimated the overall non-linear and delayed effects of the Premise Index (PI), Breteau Index (BI) and Container Index (CI) on dengue incidence in Kalutara district. A set of MOH division-specific variables were evaluated within the same meta-analytical framework to determine their moderator effects on dengue risk. Using generalized additive models, we assessed the utility of Aedes larval indices in predicting dengue incidence. RESULTS: We found that all three larval indices were associated with dengue risk at a lag of 1 to 2 months. The relationship between PI and dengue was homogeneous across MOH divisions, whereas that with BI and CI was heterogeneous. The threshold values of BI, PI and CI associated with dengue risk were 2, 15 and 45, respectively. All three indices showed a low to moderate accuracy in predicting dengue risk in Kalutara district. CONCLUSIONS: This study showed the potential of vector surveillance information in Kalutara district in developing a threshold-based, location-specific early warning system with a lead time of 2 months. The estimated thresholds are nonetheless time-bound and may not be universally applicable. Whenever longitudinal vector surveillance data areavailable, the methodological framework we propose here can be used to estimate location-specific Aedes larval index thresholds in any other dengue-endemic setting
    corecore